KADAR FLAVONOID TOTAL PADA EKSTRAK DAUN GEDI (Abelmoschus manihot.L)

TOTAL FLAVONOID CONTENT IN GEDI LEAF EXTRACT (Abelmoschus manihot.L)

Nabila Salzabila Jurusan Farmasi Poltekkes Kemenkes Makassar

ABSTRACT

The gedi plant (Abelmoschus manihot L.) is an antibacterial plant that has antimicrobial compounds, such as flavonoids which have the potential to act as antioxidants. This study aims to determine the total flavonoid content calculated as quercetin contained in Gedi Leaf extract (Abelmoschus manihot. L) originating from Mamasa Regency, West Sulawesi. Flavonoid compounds can be measured using UV-Vis spectrophotometry. Gedi leaves (Abelmoschus manihot. L) were macerated with 96% ethanol solvent. The results obtained in this study showed that the flavonoid content contained in Gedi Leaf extract (Abelmoschus manihot. L) originating from Mamasa Regency, West Sulawesi was 110,5755±2,02 mgQE/g extract or 11.0575% w/w.

Keywords: Gedi Leaves, Total Flavonoid Content, UV-Vis Spectrophotometry.

ABSTRAK

Tanaman gedi (Abelmoschus manihot L.) merupakan salah satu tumbuhan antibakteri yang memiliki senyawa antimikroba, seperti flavonoid yang berpotensi sebagai antioksidan. Penelitian ini bertujuan untuk menentukan kadar flavonoid total yang dihitung sebagai kuersetin yang terdapat dalam ekstrak Daun Gedi (Abelmoschus manihot. L) yang berasal dari Kabupaten Mamasa, Sulawesi Barat. Senyawa flavonoid dapat diukur dengan menggunakan spektrofotometri UV-Vis. Daun Gedi (Abelmoschus manihot. L) dimaserasi dengan pelarut etanol 96%. Hasil yang diperoleh pada penelitian ini menunjukkan bahwa kadar flavonoid yang terkadung dalam ekstrak Daun Gedi (Abelmoschus manihot. L) yang berasal dari Kabupaten Mamasa, Sulawesi Barat sebesar 110,5755±2,02 mgQE/ g atau 11,0575 % b/b.

Kata kunci: Daun Gedi, Kandungan Total Flavonoid, Spektrofotometri UV- Vis.

PENDAHULUAN

Kulit merupakan bagian terluar dari tubuh yang berfungsi melindungi dari berbagai macam gangguan dan rangsangan dari luar. Sehingga kesehatan kulit sangat penting agar terhindar dari penyakit serta penuaan kulit (Jeschke, 2020). Penuaan dini merupakan salah satu masalah penampilan yang terjadi pada sebagian besar wanita di Indonesia. Penuaan biasanya terjadi pada wajah dengan angka kejadian mencapai 80%. Proses penuaan biasanya ditandai dengan munculnya garis- garis halus atau keriput wajah. Masalah tersebut dikarenakan pengaruh paparan sinar matahari. Senyawa antioksidan berperan untuk membantu mengatasi masalah penuaan dini (Baumann dan Allemann, 2009). Sehingga banyak orang mencari produk kosmetik yang mampu mencegah penuaan salah satunya yaitu produk yang memiliki kandungan antioksidan (Cahya, A. P., & Fitri, N. 2020).

Penggunaan produk kosmetik untuk mencegah penuaan dini semakin meningkat seiring dengan perkembangan teknologi dan kesadaran individu untuk berpenampilan menarik. Namun penggunaan produk kosmetik dari bahan kimia menimbulkan banyak efek samping, seperti terjadinya iritasi kulit, flek hitam dan pemakaian jangka panjang menyebabkan kanker kulit, kerusakan ginjal dan kerusakan otak permanen. Oleh karena itu, masyarakat mulai beralih ke produk kosmetik herbal yang mengandung zat aktif sebagai antioksidan (Suhery *et al.*, 2016).

Tanaman gedi (Abelmoschus manihot L.) merupakan salah satu tumbuhan antibakteri yang memiliki senyawa antimikroba, seperti flavonoid, alkaloid, steroid, dan saponin yang berpotensi sebagai antioksidan.(Gunarti et al., 2021). Skrining fitokimia pada tanaman Gedi menunjukan bahwa tanaman ini mengandung senyawa flavonoid yang memiliki khasiat sebagai antioksidan (Luan, et al., 2020). Flavanoid adalah salah satu komponen kimia yang paling sering dilaporkan memiliki sifat pengobatan atau pencegahan penyakit. Flavanoid dapat ditemukan di semua bagian tubuh tumbuhan, termasuk akar, batang, daun, buah, biji, dan bunga. Beberapa tanaman yang mengandung flavanoid memiliki sifat antioksidan, antivirus, antiradang, antialergi, antikanker, dan antibakteri. Metabolit sekunder flavonoid dimanfaatkan untuk kesehatan dan bahan pengkhelat yang menjadi penyumbang pertama terhadap kapasitas fungsinya sebagai antioksidan (Pine et al., 2017). Karena manfaatnya pada kesehatan manusia, kandungan flavonoid pada tumbuhan yang akan dikembangkan menjadi obat herbal atau trasidisional saat ini mendapat banyak perhatian (Dalming et al.,2022). Senyawa flavonoid mengandung kromofor, maka konsentrasinya dapat diukur dengan menggunakan spektrofotometri UV-Vis. Analisis kuantitatif senyawa flavonoid total pada ekstrak Daun Gedi (Abelmoschus manihot L.) dilakukan dengan spektrofotometri UV-Vis karena flavonoid mengandung sistem aromatik yang terkonjugasi, yang menunjukkan pita serapan kuat pada daerah spektrum sinar UV-Vis (Suhaena A.et al.,2021)

Data hasil penelitian sebelumnya, terkait kadar flavonoid Daun Gedi (*Abelmoschus manihot* L.) yang dilakukan Pranowo *et, al* (2016) di daerah Cianjur kadar total flavonoid serbuk Daun Gedi adalah 56,2±0,09 mg g⁻¹ bahan setara kuersetin. Hal ini menunjukkan bahwa kadar flavonoid total Daun Gedi dalam penelitian ini lebih tinggi dibandingkan dengan kadar flavonoid Daun Gedi dari daerah Palu yang hanya mencapai 41,56±0,12 mg g⁻¹ (Pine *et al.*, 2017). Dari kedua penelitian tersebut, dapat disimpulkan bahwa terdapat perbedaan nilai dari kadar flavonoid berdasarkan tempat tumbuh. Oleh karena itu, peneliti ingin melakukan penelitian kadar flavonoid total ekstrak Daun Gedi (*Abelmoschus manihot*. L) dengan mengambil sampel dari tempat tumbuh yang berbeda yaitu berasal dari Kabupaten Mamasa, Sulawesi Barat. Karena sejauh ini belum ada yang melakukan penelitian di wilayah tersebut.

METODE

Desain, Tempat dan Waktu

Jenis Penelitian yang dilakukan merupakan penelitian observasional yang bertujuan untuk mengetahui kadar flavonoid total yang dihitung sebagai kuersetin yang terdapat dalam ekstrak Daun Gedi (*Abelmoschus manihot*. L). Penelitian ini akan dilaksanakan pada bulan April s/d Juni 2024 di Laboratorium Kimia, Jurusan Farmasi Politeknik Kesehatan Kemenkes Makassar.

Bahan dan alat

Corong gelas, gelas piala, gelas ukur, kertas saring, kapas, labu ukur, *rotary evaporator*, pipet volume, pipet tetes, penangas air, spektrofotometri UV-Vis, sendok tanduk batang pengaduk, cawan porselin, tabung reaksi, dan timbangan analitik.

Daun gedi (*Abelmoschus manihot*. L) yang telah dikeringkan, aluminium foil, aquadest, ethanol 96%, almunium klorida (AlCl₃), HCl pekat, bubuk logam Mg, natrium asetat dan kuersetin,.

Langkah – langkah Penelitian Penyiapan Sampel

Daun gedi yang telah di ambil dicuci bersih dengan air mengalir, kemudian dipotong-potong kecil dengan ukuran 0.5-1 cm. Setelah itu, dikeringkan dengan cara diangin-anginkan selama beberapa hari dan terhindar dari paparan sinar matahari langsung.

Pembuatan Ekstrak

Daun gedi yang telah kering diekstraksi dengan metode maserasi. Proses ekstraksi dengan metode maserasi dilakukan dengan menimbang simplisia Daun Gedi sebanyak 500 gram. Sampel yang telah ditimbang, dimasukkan ke dalam bejana toples. Selanjutnya ditambahkan cairan penyari hingga seluruh simplisia tenggelam minimal 5 cm dari permukaan simplisia. Campuran simplisia di diamkan selama 3 hari dan sesekali di aduk. Setelah itu disaring ke dalam bejana toples untuk memisahkan filtrat dan ampasnya. Kemudian ampas dikumpulkan lalu dimaserasi kembali dengan

menggunakan cairan penyari yang sama banyak, hal ini di ulang sebanyak 2 kali. Maserat yang diperoleh dipekatkan dengan menggunakan *rotary evaporator* pada suhu 40-50°C sampai diperoleh ekstrak kental.

Uji kuantitatif flavonoid

a) Pembuatan Larutan Induk Kuersetin

Sebanyak 10 mg standar kuersetin dimasukkan ke dalam labu tentukur dilarutkan dengan etanol 96% sampai volume tepat 100,0 mL (100 ppm). Dari larutan tersebut dibuat larutan masing masing sebanyak 10 mL dengan konsentrasi 2, 4, 6, 8, dan 10 ppm. (Alfrida, 2021)

b) Penentuan Panjang Gelombang Maksimum (\(\lambda\) maks) Kuersetin

Dipipet 1,0 mL larutan standar kuersetin 6 ppm kemudian ditambahkan 1 ml AlCl3 2 % dan 1 mL 120 mM. Disimpan selama 30 menit pada suhu kamar. Selanjutnya penentuan panjang gelombang maksimum dilakukan dengan menggunakan spektrofotometer pada panjang gelombang 400 – 800 nm. (Alfrida, 2021)

c) Penentuan Serapan Larutan Standar Kuersetin

Diukur 1,0 mL dari masing-masing konsentrasi larutan kuersetin yang telah dibuat kemudian kedalamnyaditambahkan 1 ml pereaksi AlCl3 2 % dan 1 mL 120 mM. larutan disimpan selama 30 menit pada suhu kamar. Serapan larutan tersebut diukur pada panjang gelombang 400 – 800 nm. (Alfrida, 2021)

d) Penentuan Kandungan Total Flavonoid Ekstrak Daun Gedi

Ditimbang 50 mg ekstrak,dimasukkan ke dalam labu tentukur dilarutkan dengan etanol 96% sampai volume tepat 10 mL. Dipipet 1,0 mL laruran ekstrak lalu ke dalamnya ditambahkan 1 ml pereaksi AlCl3 2 % dan 1 mL 120 mM kemudian diinkubasi selama 30 menit pada suhu kamar. Serapan larutan sampel diukur pada panjang gelombang 400 – 800 nm. juga Dibuat larutan blanko dengan cara dipipet 1,0 mL etanol 96% lalu ditambahkan 1 ml AlCl3 2 % dan 1 mL 120 Mm (Alfrida, 2021). Pengujian dilakukan replikasi sebanyak 3 kali.

Pengolahan dan Analisa Data

Kadar flavonoid dihitung menggunakan persamaan regresi linier berdasarkan kurva kalibrasi hasil pembacaan spektrofotometer UV-Vis.

HASIL

Hasil penelitian analisis kadar total flavonoid ekstrak Daun Gedi (*Abelmoschus manihot*. L) dengan metode spektrofotometri sinar tampak didapatkan rata-rata sebesar $110,5755 \pm 2,02 \,\mathrm{mgQE/g}$ ekstrak atau $11,0575 \,\%$ $^b/_b$.

PEMBAHASAN

Penelitian ini dilakukan untuk menentukan kadar total flavonoid ekstrak Daun Gedi (*Abelmoschus manihot*. L) yang berasal dari Kabupaten Mamasa, Sulawesi Barat dengan metode spektofotometri UV-Vis. Bagian yang sering digunakan untuk perawatan wajah adalah daunnya. Ekstrak diperoleh dengan metode maserasi. Metode maserasi tidak memerlukan pemanasan, sehingga flavonoid yang peka terhadap panas kecil kemungkinannya untuk rusak. Ekstrak yang diperoleh berupa ekstrak kental yang berwarna hijau tua kecoklatan yang memiliki aroma khas.

Hasil pengujian yang diperoleh pada penelitian ini menunjukkan bahwa kadar flavonoid yang terkadung dalam ekstrak Daun Gedi (*Abelmoschus manihot*. L) yang berasal dari Kabupaten Mamasa, Sulawesi Barat sebesar 110,5755 ± 2,02 mgQE/ g ekstrak atau 11,0575 % $^b/_b$. Sedangkan hasil penelitian sebelumnya, terkait kadar flavonoid Daun Gedi (*Abelmoschus manihot* L.) yang dilakukan Pranowo *et, al* (2016) di daerah Cianjur kadar total flavonoid Daun Gedi adalah 56,2±0,09 mg g⁻¹ bahan setara kuersetin dan kadar flavonoid Daun Gedi dari daerah Palu yaitu 41,56±0,12 mg g⁻¹ (Pine *et al.*, 2017). Pada penelitian Li (2017) melaporkan bahwa senyawa golongan flavonoid merupakan senyawa yang bersifat termolabil atau mudah rusak akibat suhu. Hal ini menyebabkan kandungan senyawa flavonoid lebih tinggi pada pengeringan beku *freeze dryer* dibandingkan dengan metode pengeringan oven dan matahari. Hasil penelitian sebelumnya yang melaporkan bahwa penurunan kadar polifenol pada pengeringan matahari dan oven dapat

disebabkan oleh enzim polifenol oxidase (Gümüşay, 2015). Enzim ini dapat menyebabkan hilangnya kompleks fenolik dalam sampel (Bennett, 2011). Hal ini juga terjadi pada senyawa flavonoid yang merupakan salah satu kelompok senyawa polifenol (Mutha et al., 2021). kadar flavonoid tertinggi pada ekstrak daun tumbuhan apu-apu terdapat pada pengeringan dengan freeze dryer yaitu 146.80±5.29 mg QE/g sampel kering. Nilai tersebut berbeda secara signifikan (p<0,05) jika dibandingkan dengan metode pengeringan oven dan matahari yang masing-masing memiliki kadar flavonoid sebesar 99,57±4,77 mg QE/g sampel kering dan 58,80±2,40 mg QE/g sampel kering (Sudirman, S., Aprilia, E., & Janna, M. 2022). Uji kuantitatif penentuan total flavonoid dilakukan menggunakan metode spektrofotometri UV-Vis. Hal ini disebabkan flavonoid mampu memberikan serapan dan spektrum sinar tampak dari gugus aromatik terkonjugasi (Rusdiati et al., 2020).

Penggunaan pada Spektrofotometri UV-Vis juga dapat berpengaruh terhadapperbedaan konsetrasi pada tanaman karena penggunaan alat tersebut harus dianalisis dengan senyawa yang memiliki gugus kromofon (gugus pembawa warna), serta memiliki ikatan rangkap terkonjugasi. Selain itu, hasil absorbansi dapat dipengaruhi oleh pH larutan, suhu, adanya zat pengganggu dan kerbersihan dari kuvet. (Tetha, dkk., 2016). Sehingga, hal tersebut menyebabkan perbedaan kadar pada tanaman maka dari itu untuk memastikan konsentrasi yang sebenarnya perlu menggunakan alat yang lebih akurat. Pada penetapan kadar flavonoid, ekstrak etanol 96% Daun Gedi direaksikan dengan AlCl3 dan natrium asetat sebagai pengompleks ehingga warna larutan berwarna kuning. Senyawa pengompleks adalah senyawa yang mengandung atom atau ion yang dikelilingi oleh molekul atau anion yang disebut ligan. Reagen AlCl3 membentuk kompleks dengan flavonoid sehingga terjadi pergeseran panjang gelombang ke arah visible (sinar tampak) (Rusdiati et al., 2020). Senyawa yang digunakan sebagai standar adalah kuersetin, dikarenakan kuersetin merupakan komponen terbesar dalam tanaman. Kuersetin termasuk flavonoid dan golongan flavonol. Pada atom C-4 memiliki gugus keto dan pada C-3 serta C-5 mempunyai gugus hidroksil, dimana posisinya berdekatan antara gugus flavon dan gugus flavonol (Rusdiati et al., 2020). Pada penetapan kadar flavonoid total ekstrak etanol 96% Daun Gedi, larutan standar yang digunakan adalah kuersetin dengan konsentrasi baku seri 20 ppm, 40 ppm, 60 ppm, 80 ppm, dan 100 ppm.

KESIMPULAN

Berdasarkan hasil penelitian yang dilakukan terkait kandungan total flavonoid Daun Gedi (*Abelmoschus manihot*. L) yang diperoleh dari Kabupaten Mamasa, Sulawesi Barat menunjukkan bahwa kadar yang diperoleh sebesar 110,5755 \pm 2,02 mgQE/ g ekstrak atau 11,0575 % $^b/_b$.

SARAN

Berdasarkan kesimpulan diatas, maka perlu dilakukan penelitian menggunakan alat yang lebih akurat seperti Spektrometri Massa (Massa Spectrometry MS), Kromatografi Cair Kinerja Tinggi (HPLC) dan Kromatografi Gas (GC).

DAFTAR PUSTAKA

- Alfrida, M. S., St. Ratnah, & Tajuddin, A. (2021). Kandungan Total Flavonoid dan Aktivitas Antioksidan Ekstrak Daun Kumis Kucing (*Orthosipon stamineus* B.). *Media Farmasi Poltekkes Kemenkes Makassar*.17(2).
- Baumann, L., & Allemann, I. (2009). Antioxidants. in: Baumann L, Saghari, . Cosmetic dermatology principles and practice, New York: *Mc Graw Hill*. Vol 1.
- Cahya, A. P., & Fitri, N. (2020). Formulasi dan uji antioksidan serum wajah berbasis minyak jintan hitam (Nigella Sativa L.) menggunakan metode DPPH. *AJIE (Asian Journal of Innovation and Entrepreneurship)*, 5(3).
- Departemen Kesehatan RI. (2006). Parameter Standart Umum Ekstrak Tumbuhan Obat. Departemen Kesehatan Republik Indonesia. Jakarta.

- Gunarti, N. S., Carnia, S., & Fikayuniar, L. (2021). Uji Aktivitas Antibakteri Ekstrak Daun Gedi (*Abelmoschus manihot* L.) Terhadap Bakteri Penyebab Jerawat. *Jurnal Buana Farma*, 1(1).
- Jeschke, M. G., van Baar, M. E., Choudhry, M. A., Chung, K. K., Gibran, N. S., & Logsetty, S. (2020). Burn injury. *Nature Reviews Disease Primers*, 6(1).
- Pine, A. T. D., Alam, G., & Attamimi, F. (2017). Standardisasi mutu ekstrak Daun Gedi (Abelmoschus manihot (L.) Medik) dan uji efek antioksidan dengan metode DPPH. *Jurnal Farmasi UIN Alauddin Makassar*, 3(3).
- Pranowo, D., Noor, E., Haditjaroko, L., & Maddu, A. (2016). Optimasi ekstraksi flavonoid total Daun Gedi (*Abelmoschus manihot* L.) dan uji aktivitas antioksidan. *Jurnal Bul. Littro*, 27(1).
- Rusdiati, H., Sukawaty, Y., & Husnul, W. (2020). Penetapan Kadar Flavonoid Daun Binahong (Anredera Cordifolia (Ten) Steenis) Dengan Metode Spektrofotometri Uv-Vis. *Jurnal Farmasi Dan Kesehatan*, 10(2).
- Sudirman, S., Aprilia, E., & Janna, M. (2022). Kandungan senyawa polifenol dan aktivitas antioksidan daun tumbuhan apu-apu (Pistia stratiotes) dengan metode pengeringan yang berbeda. *Jurnal Pengolahan Hasil Perikanan Indonesia*, 25(2).
- Suhaenah A, Pratama M, Amir AHW. (2021). Penetapan Kadar Flavonoid Fraksi Etil Asetat Daun Karet Kebo (*Ficus elastica*) Dengan Metode Spektrofotometri Uv-Vis. *As-Syifaa Jurnal Farmasi*.13(1).
- Suhery, W. N., Fernando A., Netralis H.(2016). Uji Aktivitas Antioksidan Dari Ekstrak Bekatul Padi Ketan Merah Dan Hitam (*Oryza sativa L.*var. *glutinosa*) dan Formulasinya Dalam Sediaan Krim. *Jurnal Farmasi Indonesia*. 13 (1)
- Tetha. D.A, R. Djarot.S.K, 2016, Pebandingan Metode Analisa Kadar Besi antara Serimetri dan Spektrofotometer UV-Vis dengan Pengompleks 1,10- Fenantrolin, *Akta Kimindo.Vol. 1 (1)*.